7.6 LCR circuits

LCR definitions

LCK definitions			
Current	$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$	(7.139)	I current Q charge
Ohm's law	V = IR	(7.140)	R resistance V potential difference over R I current through R
Ohm's law (field form)	$J = \sigma E$	(7.141)	$egin{array}{ll} J & ext{current density} \\ E & ext{electric field} \\ \sigma & ext{conductivity} \\ \end{array}$
Resistivity	$\rho = \frac{1}{\sigma} = \frac{RA}{l}$	(7.142)	 ρ resistivity A area of face (I is normal to face) l length
Capacitance	$C = \frac{Q}{V}$	(7.143)	C capacitance V potential difference across C
Current through capacitor	$I = C \frac{\mathrm{d}V}{\mathrm{d}t}$	(7.144)	I current through C t time
Self-inductance	$L = \frac{\Phi}{I}$	(7.145)	Φ total linked flux I current through inductor
Voltage across inductor	$V = -L \frac{\mathrm{d}I}{\mathrm{d}t}$	(7.146)	V potential difference over L
Mutual inductance	$L_{12} = \frac{\Phi_1}{I_2} = L_{21}$	(7.147)	Φ_1 total flux from loop 2 linked by loop 1 L_{12} mutual inductance I_2 current through loop 2
Coefficient of coupling	$ L_{12} = k\sqrt{L_1L_2}$	(7.148)	k coupling coefficient between L_1 and L_2 (≤ 1)
Linked magnetic flux through a coil	$\Phi = N\phi$	(7.149)	Φ linked flux N number of turns around ϕ ϕ flux through area of turns

Resonant LCR circuits

					, series
Phase resonant	$\omega_0^2 = \begin{cases} 1/LC & \text{(seri)} \\ 1/LC - R^2/L^2 & \text{(par)} \end{cases}$	es)	ω_0	resonant angular frequency inductance	
frequency ^a	(1/EC R/E (par	(7.150)	C	capacitance	parallel
		(7.130)	R	resistance	
Tuning ^b	$\frac{\delta\omega}{\omega_0} = \frac{1}{Q} = \frac{R}{\omega_0 L}$	(7.151)	$\delta \omega$ Q	half-power bandwidth quality factor	
Quality factor	$Q = 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}}$	(7.152)			

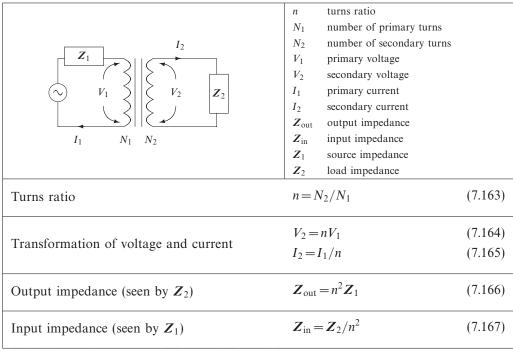
Energy in capacitors, inductors, and resistors

Energy stored in a capacitor	$U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$	(7.153)	U C Q	stored energy capacitance charge potential difference
Energy stored in an inductor	$U = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \frac{1}{2}\frac{\Phi^2}{L}$	(7.154)	L Φ I	inductance linked magnetic flux current
Power dissipated in a resistor ^a (Joule's law)	$W = IV = I^2R = \frac{V^2}{R}$	(7.155)	W R	power dissipated resistance
Relaxation time	$\tau = \frac{\epsilon_0 \epsilon_r}{\sigma}$	(7.156)	$ au$ $\epsilon_{ m r}$ σ	relaxation time relative permittivity conductivity

^aThis is d.c., or instantaneous a.c., power.

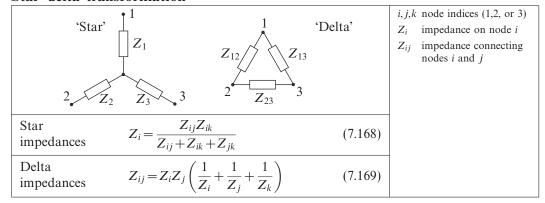
Electrical impedance

Impedances in series	$Z_{\text{tot}} = \sum_{n} Z_{n}$	(7.157)
Impedances in parallel	$\boldsymbol{Z}_{\text{tot}} = \left(\sum_{n} \boldsymbol{Z}_{n}^{-1}\right)^{-1}$	(7.158)
Impedance of capacitance	$Z_{\rm C} = -\frac{\mathbf{i}}{\omega C}$	(7.159)
Impedance of inductance	$Z_{\rm L}\!=\!{ m i}\omega L$	(7.160)
Impedance: Z	Capacitance: C	
Inductance: L	Resistance: $R = \text{Re}[Z]$	
Conductance: $G = 1/R$	Reactance: $X = Im[Z]$	
Admittance: $Y = 1/Z$	Susceptance: $S = 1/X$	



^aAt which the impedance is purely real. ^bAssuming the capacitor is purely reactive. If L and R are parallel, then $1/Q = \omega_0 L/R$.

Kirchhoff's laws


Current law	$\sum_{\text{node}} I_i = 0$	(7.161)	I_i	currents impinging on node
Voltage law	$\sum_{\text{loop}} V_i = 0$	(7.162)	V_i	potential differences around loop

${\bf Transformers}^a$

^aIdeal, with a coupling constant of 1 between loss-free windings.

Star-delta transformation

